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The Jump-to-Contact Distance in Atomic Force
Microscopy Measurement

Jiunn-Jong Wu
Department of Mechanical Engineering, Chang Gung University,
Tao-Yuan, Taiwan

The jump-to-contact phenomenon of atomic force microscopy measurement is
investigated. The force-approach relation for the adhesive contact based on the
Lennard-Jones potential with the Derjaguin approximation is analyzed. For a
small Tabor parameter, the force-approach relation is similar to that with the
van der Waals force between two rigid spheres. For a large Tabor parameter, the
force-approach relation is similar to that with the van der Waals force between
two deformable spheres. Empirical formulas for the approaching part of the
force-approach curve are proposed. The jump-to-contact distance can be obtained
by using the semi-empirical formulas. The jump-to-contact distance for a fixed
grips device and for large Tabor parameter is also obtained.

Keywords: AFM; Contact mechanics; Jump-to-contact; Numerical simulation

NOMENCLATURE

A non-dimensional approach, A ¼ a
e

A0 non-dimensional approach, A0 ¼ A
l3=7

E� equivalent Young’s modulus
E1, E2 Young’s modulus
H non-dimensional distance, H ¼ h

e
H0 non-dimensional distance, H0 ¼ H

l3=7

h distance between two surfaces
HA Hamaker constant
K(�) the complete elliptic integral of the first kind
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P non-dimensional pressure, P ¼ pe
Dc

p pressure
R equivalent radius of curvature, 1

R ¼ 1
R1

þ 1
R2

R1, R2 radius of curvature
r radial coordinate
r̂r non-dimensional radial coordinate, r̂r ¼ rffiffiffiffi

eR
p

r̂r0 non-dimensional radial coordinate, r̂r0 ¼ r̂r
l3=14

s radial coordinate
ŝs non-dimensional radial coordinate, ŝs ¼ sffiffiffiffi

eR
p

ŝs0 non-dimensional radial coordinate, ŝs0 ¼ ŝs
l3=14

W non-dimensional force, W ¼ w
2pDcR

W0 non-dimensional force, W0 ¼ Wl6=7

w force between two spheres
a distance between two spheres
Dc surface energy
e the intermolecular distance, where zero force occurs

between two infinite surfaces.
l

Tabor parameter, l � RDc2

E�2e3

� �1=3

1. INTRODUCTION

Atomic force microscopy (AFM) is widely used in nanotechnology. In
AFM measurements, jump-to-contact and jump-off-contact are well-
known phenomena. For AFMmeasurements, the force-distance curves
are fundamental tools in research [1]. Using the force-distance curves,
Greenwood offered an explanation for jump-to-contact and jump-off-
contact phenomena [2]. For an apparatus of finite stiffness, jump-to-
contact and jump-off-contact occur when the force gradient exceeds
the stiffness of the cantilever. For a fixed-grips device (apparatus
of infinite stiffness), jump-to-contact and jump-off-contact occur at
the vertical tangents of the S-shaped force-approach curve. Figure 1
shows the paths for jump-to-contact and jump-off-contact. A common
technique in AFM work, introduced by Israelachvili and Tabor [3], is
to measure sample topography in the non-contact mode, but this
requires that jumping into contact is avoided.

The jump-to-contact phenomenon was first described by Overbeek
and Sparnaay [4]. This phenomenon was also found by Tabor and
Winterton [5] when measuring long-range van der Waals surface
forces between crossed mica cylinders. Israelachvili and Tabor [3] gave
a formula to predict the jump-to-contact distance, considering only the
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van der Waals force and assuming surfaces to be rigid. Their formula
was widely used [1,6,7], for example, by Das et al. [8] in finding the
Hamaker constant. In 1971, Johnson, Kendall, and Roberts proposed
the famous JKR model [9], which predicts a pull-off force between
two elastic spheres. The JKR model can be used to predict the
jump-off-contact distance, but in terms of the surface energy instead
of the surface force law. However, the JKR analysis does not deal with
the jumping-to-contact problem. In 1992, Attard and Parker [10]
assumed that the deformation varies slowly compared with the curva-
ture, and gave an analytical formula for the jump criterion. Their
jumping distance is the actual separation (not the approach) between
two deformed spheres. It is not useful in predicting the jump-to-
contact phenomenon. In 2004, Rutland et al. [11] analyzed the data
for using AFM to measure deformable materials. In their analyses,
they set the zero of separation at the end point of the jump.

However, Burnham et al. [12] found that electrostatic force plays
an important role in long-range interaction. Gady et al. [13] found

FIGURE 1 The paths for jump-to-contact and jump-off-contact. In an appar-
atus of finite stiffness, jump-to-contact and jump-off-contact occur when the
force gradient exceeds the spring constant of the cantilever. In a fixed-grips
device, jump-to-contact and jump-off-contact occur at the vertical tangents of
the force-approach curve.
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that van der Waals dominates the adhesion for a separation less
than 30nm, while the electrostatic force dominates the adhesion for
separation larger than 30nm. Since the electrostatic force depends on
the surface charge density of the sample, Burnham et al. [12] concluded
that if the cleanliness of the surfaces were better controlled, the van der
Waals forces should become the dominant attraction between
uncharged, non-magnetic surfaces. This paper is focused on the van
der Waals force.

Self-consistent numerical analysis for the adhesive contact between
elastic spheres was done by Greenwood [2] and Feng [14] to find the
force-displacement relation with the Lennard-Jones force law, which
combines the van der Waals long-range attractive forces with shorter
range repulsive forces. Using this force-displacement relation, the
jump-to-contact distance can be obtained. However, the interest of
these workers was in the complete force-displacement curve, and
particularly in the pull-off forces.

In this paper the jump-into-contact region will be examined in detail,
and formulae for the approaching part of the force-approach curve will
be derived: from these the jump-to-contact distance can be obtained.

2. ADHESIVE CONTACT BETWEEN SPHERES

2.1. Adhesive Contact of Rigid Surfaces

The Lennard-Jones (6,12) law, where the first term is the van der
Waals attraction and the second term is an empirical one, describes
the potential between two molecules. By integrating the Lennard-
Jones potential over all molecules of two bodies, the pressure, p(h),
between two plane, semi-infinite bodies is [2]

pðhÞ ¼ 8Dc
3e

e
h

� �3
� e

h

� �9� �
; ð1Þ

where h is the gap between two surfaces, e is the equilibrium distance
between them and, Dc is the surface energy.

If the curvature of the surface is very small and the distance
between the two surfaces is small, Eq. (1) is used to obtain the local
pressure (Derjaguin’s approximation [15]).

Using the parabolic approximation h¼ aþ r2=2R for the gap, where
R is the equivalent radius of curvature, 1=R¼ 1=R1þ 1=R2, and a is the
approach distance, the total force between two bodies is simply [16]

w ¼ 8pRDc
3

e
a

� �2
� 1

4

e
a

� �8� �
: ð2Þ
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Jump-to-contact occurs when the gradient of the force-approach
relation equals the stiffness of the cantilever, k:

k ¼ dw

da
: ð3Þ

When only the van der Waals force is considered, this gives the
Israelachvili and Tabor [3] equation

e
a

� �3
¼ 3ke

16pRDc
ð4Þ

(where the Hamaker constant, HA, used in [3] has been replaced by
HA� (16p=3) e2Dc). When the full Lennard-Jones interaction is used,
the corresponding equation is

e
a

� �3
� e

a

� �9
¼ 3ke

16pRDc
: ð5Þ

2.2. The Adhesive Elastic Problem

The adhesive elastic contact problem has been described in detail by
Greenwood [2], and effective methods of performing the numerical
solution described also by Greenwood [17]: here only a brief summary
is given. Using the parabolic approximation h¼ aþ r2=2R for the
initial gap and the half-space approximation for the deformation, the
gap between the surfaces of two elastic spheres is [2]

hðrÞ � a� r2

2R
� 4

pE�

Z 1

0

pðsÞs
rþ s

K
2
ffiffiffiffiffi
rs

p

rþ s

� �
ds ¼ 0; ð6Þ

where E� is the contact modulus, 1
E� ¼ 1�n2

1

E1
þ 1�n2

2

E2
, r, s are the radial

coordinates, and K(�) is the complete elliptic integral of the first kind.
The pressure p(s) is obtained from Eq. (1), but only after the gap

thickness, h(s), has been found from Eq. (3), so that an iterative
method is required. Note the convention that the two spheres are
‘‘in contact’’ when the pressure vanishes, so at this point the approach
a is e, not zero. Integrating the pressure gives the total force, w, as

w ¼ 2p
Z

prdr: ð7Þ

Equations (2) to (7) apply equally to the crossed mica cylinders
geometry of Israelachvili and Tabor, and to adhesive contact between
an AFM tip and a surface.
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When the following non-dimensional variables are used,

H ¼ h

e
A ¼ a

e
P ¼ pe

Dc
W ¼ w

2pRDc
;

the solution of Eq. (6) depends only on the Tabor parameter1 [18,19]

l ¼ RDc2

E�2e3

� �1=3
.

Hðr̂rÞ�A�1

2
r̂r2þ32l3=2

3p

Z 1

0

1

HðŝsÞ3
� 1

HðŝsÞ9

" #
ŝs

r̂rþ ŝs
K

2
ffiffiffiffiffi
r̂rŝs

p

r̂rþ ŝs

 !
dŝs¼0: ð8Þ

In 1992, Attard and Parker [10] assumed that the deformation
varies slowly compared with the curvature:

uðrÞ � uð0Þ:

Based on this assumption, they gave an analytical formula for jump
criterion for the fixed-grips device. Their formula is based on the
deformed surface. The criterion can be expressed as H(0)¼ 1.84 l7=3.

3. JUMP-TO-CONTACT DISTANCE

3.1. Rigid Solids and Low Tabor Parameter Surfaces

Figure 2 shows the force-approach curves for the adhesive contact
between two spheres. The solid line is for the van der Waals force
between rigid spheres: the dotted line is for the Lennard-Jones
force between rigid spheres. The other lines are for the Lennard-Jones
force between deformable spheres with Tabor parameters l¼ 0.01, 0.1,
0.2, and 0.5. For all these cases, the force-approach curve has not
developed the S-shape shown in Fig. 1, so there is no jump-in-contact
for a fixed grips device in these cases. All the approaching parts of
the force-approach curves are very similar to the van der Waals curve
for l� 0.1. The simple relation [Eq. (4)] for the van der Waals force
between rigid spheres can predict the jump-to-contact distance well
for l� 0.1 when the stiffness of the cantilever is less than the
maximum gradient of the force-approach curve.

1Tabor [18] proposed this parameter which can explain the discrepancies between the
JKR [9] and the Bradley [16] models. Muller et al. [19] subsequently performed a
numerical simulation and confirmed that Tabor’s parameter does govern the transition.
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3.2. Jump-to-Contact for Large Tabor Parameter

3.2.1. The van der Waals Force Between Deformable Spheres
For large Tabor parameter (l¼ 3, 5, and 10), the approaching part of

the force-approach curve is shown in Fig. 3. These curves have similar
shapes. In this figure, A> 6 for l¼ 3, A> 9 for l¼ 5, and A> 16 for
l¼ 10. Therefore, H9>>H3 (where A, H> 2.5) for these cases and the
van derWaals force dominates the interactions. If the van derWaals force
is the only force, the gap between the surfaces of two elastic spheres is

Hðr̂rÞ � A� 1

2
r̂r2 þ 32l3=2

3p

Z 1

0

1

HðŝsÞ3
ŝs

r̂rþ ŝs
K

2
ffiffiffiffiffi
r̂rŝs

p

r̂rþ ŝs

 !
dŝs ¼ 0: ð9Þ

In Eq. (9), the Tabor parameter can be omitted by the following
non-dimensional parameters.2

H0 ¼ H

l3=7
A0 ¼ A

l3=7
K 0 ¼ K

l3=7

r̂r0 ¼ r̂r

l3=14
ŝs0 ¼ ŝs

l3=14

FIGURE 2 The force-approach relation for a small Tabor parameter.

2H and A have the same ‘‘unit.’’ r̂r and ŝs’s unit is H1=2. The unit for Eq. (9) is
OðHÞ þOðl3=2H1=2

H3 Þ ¼ 0. Thus, by setting H0 ¼ H
l3=7, the Tabor parameter, l, can be omitted.
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Thus, Eq. (9) becomes

H0ðr̂r0Þ � A0 � 1

2
r̂r02 þ 32

3p

Z 1

0

1

H03
ŝs0

r̂r0 þ ŝs0
K

2
ffiffiffiffiffiffiffi
r̂r0ŝs0

p

r̂r0 þ ŝs0

 !
dŝs0 ¼ 0: ð10Þ

The solution is independent of the Tabor parameter.
Figure 4 shows the relationship between A0 and W0. It is found that

all the curves collapse into one curve. That is, for A> 2.5, the solution
with the van der Waals force is a good approximation for the solution
with the Lennard-Jones potential.

The new non-dimensional total force can be defined as

W0 ¼ 8

3

Z
r̂r0dr̂r0

H03 ¼ Wl6=7: ð11Þ

The new non-dimensional spring constant is defined as

K 0 ¼ dW 0

dA0 ¼
l9=7dW

dA
¼ l9=7K : ð12Þ

3.2.2. Empirical Formulas
The numerical simulation is cumbersome. If one wishes to compare

the result with experiment data, a simpler equation that approximates

FIGURE 3 The approach part of the force-approach curve with Tabor para-
meter l¼ 3, 5, and 10.
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the jump-to-contact distance and the total force is preferred. It is not
practical to make a formula fitting the curve for the jump-to-contact
distance and the total force for all different Tabor parameters. Thus,
the equation for the van der Waals force is proposed.

The force-approach curve up to the vertical tangent is related to
jump-to-contact. Using curve-fitting, the exact relation between A0

and W0 can be approximated as below:

1. For A0 � 3, where K0 � 0.1766,

A0 ¼ 206:2W04 þ 249:9W03 þ 126:8W02 þ 31:72W0 þ 5:835 ð13Þ

K 0 ¼ 1

824:8W03 þ 749:7W02 þ 253:6W0 þ 31:72
ð14Þ

2. For 4�A0 > 3, where 0.0487�K0 < 0.1766,

W0 ¼ � exp 0:0806A04 � 1:234A03 þ 7:209A02 � 19:61A0 þ 19:026
� 	

ð15Þ

FIGURE 4 The approach part of the force-approach curves with new
non-dimensional parameters. The lines for Eqs. (13) and (15) nearly coincide
with that for the van der Waals force between deformable spheres.
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K 0 ¼ W 0 0:3224A03 � 3:702A02 þ 14:418A0 � 19:61
� 	

ð16Þ

3. For 5�A0 > 4, where 0:0213 � K 0 < 0:0487,

W0 ¼ � exp 0:0047A04 � 0:1006A03 þ 0:8475A02 � 3:718A0 þ 4:1065
� 	

ð17Þ

K 0 ¼ W0 0:0188A03 � 0:3018A02 þ 1:6950A0 � 3:718
� 	

ð18Þ

4. For A0 > 5, where K0 < 0.0213,

W0 ¼ � 4

3
A0�2 ð19Þ

K 0 ¼ 8

3
A0�3 ð20Þ

Equations (13) to (18) can approximate the case for the van der
Waals force between deformable spheres with the errors of A0 and K0

less than 1%. Equations (19) and (20) can approximate the case for
the van der Waals force between deformable spheres with the errors
of A0 and K0 less than 2%.

Figure 5 shows the curves of non-dimensional spring constant, K0,
versus non-dimensional jump-to-contact distance, A0. For l� 1, all
curves nearly coincide. For l¼ 0.5, the van der Waals force between
deformable spheres can obtain the jump-to-contact distance for
A0 � 3 (A� 2.22). For l¼ 0.2, the van der Waals force between deform-
able spheres can obtain the jump-to-contact distance for A0 � 3:8
(A� 1.91). For l¼ 0.1, the jump-to-contact can be obtained by the
van der Waals force between rigid spheres for A0 � 3:8 (A� 1.42).

If the spring constant is given, the jump-to-contact distance can be
obtained. The procedure for finding the jump-to-contact distance is:

1. Find the Tabor parameter, l.
2. Find the non-dimensional spring constant, K and K0, by Eqs. (12)

and (19).
3. If l� 0.1 or K0 < 0.0213, the jump-to-contact distance can be

obtained by Eq. (15). Otherwise, go to Step 4.
4. From the spring constant, K0, find the adequate interval and find

the jump-to-contact distance, A0.
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3.3. Jump-to-Contact for Fixed Grips

In the approaching part, all A0 �W0 curves for large Tabor parameters
collapse into the curve for the van der Waals force. The jump-to-con-
tact distance for the van der Waals force can be used to obtain the
one for large Tabor parameters.

In the case of van der Waals force between deformable spheres, for a
fixed grips apparatus (K 0 ¼ 1), the jump-to-contact distance occurs
at the vertical tangents in Fig. 4:

A0 ¼ 2:641: ð21Þ
That is, the jump-to-contact distance for a fixed grips apparatus and
large Tabor parameter is:

A ¼ 2:641l3=7: ð22Þ
Figure 6 shows the jump-to-contact distances from the numerical

simulation with the Lennard-Jones solution and with the van der

FIGURE 5 Non-dimensional spring constants versus jump-to-contact dis-
tance. The line for the van der Waals force between deformable spheres nearly
coincides with those for Eqs. (14) and (16). The lines for the Lennard Jones
force between deformable spheres with Tabor parameter l¼ 1, 3, 10, and 20
(not shown in this figure) coincide with that for the van der Waals force
between deformable spheres.
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Waals force. A good curve fit for jump-to-contact distance with the
Lennard-Jones potential and a fixed-grips device is:

A ¼ 2:641l3=7 exp � 1

2
ffiffiffi
l

p
� �

: ð23Þ

4. DISCUSSION

The formulae proposed in Section 3 can obtain the jump-to-contact
distance for large Tabor parameters, such as an ATM tip measuring
a membrane or cells. Butt et al. [20] argued that the jump-to-contact
can be avoided by using a stiff cantilever. From Section 3, it is obvious
that the jump-to-contact phenomena can not be avoided for large
Tabor parameters. The only method for avoiding jump-to-contact
for large Tabor parameters is to keep the distance larger than the
jump-to-contact distance.

Although other forces are not considered in this paper, the method
in Section 3 can still be applied, as long as the van der Waals force
dominates the interaction between the tip and the surface.

FIGURE 6 Jump-to-contact distances with the Lennard-Jones potential and
those obtained by Eqs. (22) and (23).
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Israelachvili and Tabor’s formula can predict the jump-to-contact
distance for l� 0.1 or K0 < 0.0213. The result in Section 3 can obtain
the jump-to-contact distance for A� 2.5 and for all other cases.

Attard and Parker’s formula is based on the deformed surface [h(0)]
and is for the fixed grips device only. For predicting the jump-to-con-
tact distance, using a is better than h(0), since the instrument can
detect the position of a, but not of h(0). Therefore, the formulae in
Section 3 are better than Attard and Parker’s formula in predicting
the jump-to-contact phenomena.

5. EXPERIMENTAL

In 2006, Wahl et al. [21] used the AFM to measure the force between
a polydimethylsiloxane (PDMS) surface and a tip. In Fig. 7, the tip
jumps to contact at point A, whose position is about 585nm. The
tip jumps off contact at point B, whose position is about 655nm.
The distance between jump-to-contact and jump-off-contact is about
70nm.

In this case, Dc¼ 49mJ=m2, R¼ 10 mm, e¼ 0.5 nm. Wahl et al. [21]
show that the Tabor parameter (l¼ 96.28) for their contacts is high

FIGURE 7 Distance vs force (lower) and stiffness (upper) curves for
PDMS obtained with a 10-mm radius tip at an approach=retract rate of
1 nm=s (Reprinted from [21] with permission from Elsevier).
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enough to expect JKR behaviour. For a fixed-grips device with a large
Tabor parameter, the jump-off-contact distance can be predicted by
the JKR model [9,14].

A

l
¼ 9p

8

� �2=3

3�1=3

A ¼ 154:89

a ¼ 77:45nm

Since the experimental set up approaches the condition of ‘‘fixed
grips’’ or an infinite stiffness apparatus [21], the jump-to-contact
distance can be obtained by Eq. (22).

A ¼ 2:641l3=7 ¼ 18:70

a ¼ 9:35nm

The distance between jump-to-contact (9.35 nm) and jump-off-contact
(77.45 nm) is 68.1 nm, which is similar to that of the experiment
(70nm).

Israelachvili and Tabor [3] did not predict a jump into contact
(a¼ 0). This conflicts with observation as in Fig. 7.

6. CONCLUSION

The force-approach relation for the adhesive contact based on the
Lennard-Jones potential with the Derjaguin approximation is investi-
gated. In the approaching part, the solution with the van der Waals
force between deformable spheres can approximate that with
the Lennard-Jones potential for A� 2.5. Empirical formulae for the
approaching part of the force-approach curve are proposed. By using
the empirical formulae, the jump-to-contact distance can be obtained.
For a fixed grips device, the jump-to-contact distance is also obtained
for large Tabor parameters. The formulae in Section 3 fit well with one
set of published data, so they may be useful if more experimental data
are available for further comparisons in the future.
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